Proof \( C \left [ a, b \right ] \) with the Norm \( \left | \left | \cdot \right | \right | _{\infty} \) is a Normed Space Skip to main content

Divisibility Calculator

Enter two numbers to check if the first number is divisible by the second number: Check

Proof \( C \left [ a, b \right ] \) with the Norm \( \left | \left | \cdot \right | \right | _{\infty} \) is a Normed Space

Clearly the set of continuous function \( C \left [ a, b \right ] \) is a vector space. Now, we have to prove that the function \( \left | \left | \cdot \right | \right | _{\infty} :  C \left [ a, b \right ] \to \mathbb{R}  \) such that 

\( \left | \left | f \right | \right | _{\infty} = \displaystyle \max_{a\leq x\leq b} \left| f(x) \right| \) for every function \( f \in C \left [ a, b \right ] \)

is really a norm.


The first property we have to prove is:

\( \left | \left | f \right | \right | _{\infty} = 0 \) if and only if \( f = 0 \) is the zero function. 

Obviously, if \( f \) is the zero function, 

\( \left | \left | f \right | \right | _{\infty} =  \displaystyle \max_{a\leq x\leq b} \left| f(x) \right| =  \displaystyle \max_{a\leq x\leq b} \left| 0 \right| = 0 \).

Now, assume  \( f \) is not a zero function, therefore there exists \( c \in \left [ a, b \right ] \) such that \( f(c) \neq 0 \). Next, we obtain

\( \left | \left | f \right | \right | _{\infty} =  \displaystyle \max_{a\leq x\leq b} \left| f(x) \right| \geq \left| f(c) \right| > 0 \)

\( \Rightarrow \left | \left | f \right | \right | _{\infty} \neq 0 \).

Thus, we conclude that \( \left | \left | f \right | \right | _{\infty} = 0 \) if and only if \( f \) is the zero function. 


Next, we have to prove for every \( f \in   C \left [ a, b \right ] \) and \( k \in \mathbb{R} \),

\( \left | \left | kf \right | \right | _{\infty} = \left | k \right | \left | \left | f \right | \right | _{\infty}  \).

Take any \( f \in   C \left [ a, b \right ] \) and \( k \in \mathbb{R} \). Since \( f \) is a continous function then \( \left | f  \right | \) is also continous on \( \left [ a, b \right ] \). Now, since \( \left | f  \right | \) is continous on the compact set \( \left [ a, b \right ] \), \( \left | f  \right | \) has maximum (this is also telling us that  \( \left | \left | \cdot \right | \right | _{\infty} \) is well defined). Let \( c \in \left [ a, b \right ] \) such that \( \left | f(c)  \right | \) is the maximum value.

Given \( x \in \left [ a, b \right ] \), we obtain

\( \left | kf(x) \right | = \left | k \right | \left | f(x) \right | \leq  \left | k \right | \left | f(c) \right | \),

and 

\( \left | kf(c) \right | = \left | k \right | \left | f(c) \right | \).

It shows that \( \left | k \right | \left | f(c) \right | \) is the maximum value of \( \left | kf \right | \). In other words

\( \left | \left | kf \right | \right | _{\infty} =  \displaystyle \max_{a\leq x\leq b} \left| kf(x) \right|  =  \left | k \right | \left | f(c) \right | =   \left | k \right |\left | \left | f \right | \right | _{\infty} \).

Hence, the second property has been proved.


Lastly, we have to prove the triangle inequality. It is easy to see that for any given \( f,g \in   C \left [ a, b \right ] \), we obtain for every \( x \in \left [ a, b \right ] \),

\( \left | f(x) + g(x) \right | \leq \left | f(x) \right | + \left | g(x) \right | \leq  \displaystyle \max_{a\leq x\leq b} \left| f(x) \right| +  \displaystyle \max_{a\leq x\leq b} \left| g(x) \right| =  \left | \left | f \right | \right | _{\infty} +  \left | \left | g \right | \right | _{\infty}\).


Therefore,  \( \left | \left | f \right | \right | _{\infty} +  \left | \left | g \right | \right | _{\infty} \) is an upper bound of \( \left | f + g \right | \). Thus, we have proved the triangle inequality

\( \left | \left | f + g \right | \right | _{\infty} = \displaystyle \max_{a\leq x\leq b} \left| f(x) + g(x) \right| \leq \left | \left | f \right | \right | _{\infty} +  \left | \left | g \right | \right | _{\infty} \).


We have proved all of the properties that necessary for \( \left | \left | \cdot \right | \right | _{\infty} \) to be a norm on the vector space \( C \left [ a, b \right ] \). So, \( C \left [ a, b \right ] \) with the norm \( \left | \left | \cdot \right | \right | _{\infty} \) is a normed space. \( \blacksquare \)




Comments

Popular posts from this blog

Random Imgur Image Generator

 Generate random image from Imgur. Warning! NSFW images may appear. This generator may do not work well in mobile or some browsers.

Random Yugioh Card Generator

Generate a random Yugioh Card.