Proof \( C \left [ a, b \right ] \) with the Norm \( \left | \left | \cdot \right | \right | _{\infty} \) is a Normed Space
Clearly the set of continuous function \( C \left [ a, b \right ] \) is a vector space. Now, we have to prove that the function \( \left | \left | \cdot \right | \right | _{\infty} : C \left [ a, b \right ] \to \mathbb{R} \) such that
\( \left | \left | f \right | \right | _{\infty} = \displaystyle \max_{a\leq x\leq b} \left| f(x) \right| \) for every function \( f \in C \left [ a, b \right ] \)
is really a norm.
The first property we have to prove is:
\( \left | \left | f \right | \right | _{\infty} = 0 \) if and only if \( f = 0 \) is the zero function.
Obviously, if \( f \) is the zero function,
\( \left | \left | f \right | \right | _{\infty} = \displaystyle \max_{a\leq x\leq b} \left| f(x) \right| = \displaystyle \max_{a\leq x\leq b} \left| 0 \right| = 0 \).
Now, assume \( f \) is not a zero function, therefore there exists \( c \in \left [ a, b \right ] \) such that \( f(c) \neq 0 \). Next, we obtain
\( \left | \left | f \right | \right | _{\infty} = \displaystyle \max_{a\leq x\leq b} \left| f(x) \right| \geq \left| f(c) \right| > 0 \)
\( \Rightarrow \left | \left | f \right | \right | _{\infty} \neq 0 \).
Thus, we conclude that \( \left | \left | f \right | \right | _{\infty} = 0 \) if and only if \( f \) is the zero function.
Next, we have to prove for every \( f \in C \left [ a, b \right ] \) and \( k \in \mathbb{R} \),
\( \left | \left | kf \right | \right | _{\infty} = \left | k \right | \left | \left | f \right | \right | _{\infty} \).
Take any \( f \in C \left [ a, b \right ] \) and \( k \in \mathbb{R} \). Since \( f \) is a continous function then \( \left | f \right | \) is also continous on \( \left [ a, b \right ] \). Now, since \( \left | f \right | \) is continous on the compact set \( \left [ a, b \right ] \), \( \left | f \right | \) has maximum (this is also telling us that \( \left | \left | \cdot \right | \right | _{\infty} \) is well defined). Let \( c \in \left [ a, b \right ] \) such that \( \left | f(c) \right | \) is the maximum value.
Given \( x \in \left [ a, b \right ] \), we obtain
\( \left | kf(x) \right | = \left | k \right | \left | f(x) \right | \leq \left | k \right | \left | f(c) \right | \),
and
\( \left | kf(c) \right | = \left | k \right | \left | f(c) \right | \).
It shows that \( \left | k \right | \left | f(c) \right | \) is the maximum value of \( \left | kf \right | \). In other words
\( \left | \left | kf \right | \right | _{\infty} = \displaystyle \max_{a\leq x\leq b} \left| kf(x) \right| = \left | k \right | \left | f(c) \right | = \left | k \right |\left | \left | f \right | \right | _{\infty} \).
Hence, the second property has been proved.
Lastly, we have to prove the triangle inequality. It is easy to see that for any given \( f,g \in C \left [ a, b \right ] \), we obtain for every \( x \in \left [ a, b \right ] \),
\( \left | f(x) + g(x) \right | \leq \left | f(x) \right | + \left | g(x) \right | \leq \displaystyle \max_{a\leq x\leq b} \left| f(x) \right| + \displaystyle \max_{a\leq x\leq b} \left| g(x) \right| = \left | \left | f \right | \right | _{\infty} + \left | \left | g \right | \right | _{\infty}\).
Therefore, \( \left | \left | f \right | \right | _{\infty} + \left | \left | g \right | \right | _{\infty} \) is an upper bound of \( \left | f + g \right | \). Thus, we have proved the triangle inequality
\( \left | \left | f + g \right | \right | _{\infty} = \displaystyle \max_{a\leq x\leq b} \left| f(x) + g(x) \right| \leq \left | \left | f \right | \right | _{\infty} + \left | \left | g \right | \right | _{\infty} \).
We have proved all of the properties that necessary for \( \left | \left | \cdot \right | \right | _{\infty} \) to be a norm on the vector space \( C \left [ a, b \right ] \). So, \( C \left [ a, b \right ] \) with the norm \( \left | \left | \cdot \right | \right | _{\infty} \) is a normed space. \( \blacksquare \)
Comments
Post a Comment