Arg(x/y) = Arg(x) - Arg(y) Skip to main content

Divisibility Calculator

Enter two numbers to check if the first number is divisible by the second number: Check

Arg(x/y) = Arg(x) - Arg(y)

 


It is easy to see that \( \mathrm{arg} \left ( \frac{a}{b} \right ) = \mathrm{arg} \left ( a \right )  - \mathrm{arg} \left ( b \right )  \) for any complex number \( a \) and \( b \). But, this is not the case for the principle value that is \( \mathrm{Arg} \) does not always equal to \( \mathrm{Arg} \left ( a \right ) - \mathrm{Arg} \left ( b \right )  \).


For example, the principle value argument of \( \frac {-i}{i} \) is \( \mathrm{Arg} \left ( -1 \right ) = \pi \) but \( \mathrm{Arg} \left ( -i \right )  - \mathrm{Arg} \left ( i \right ) = -\frac {\pi }{2} - \frac  {\pi }{2} = -\pi \neq \pi = \mathrm{Arg} \left ( \frac {-i}{i} \right )\).


In order \( \mathrm{Arg} = \mathrm{Arg} \left ( a \right ) - \mathrm{Arg} \left ( b \right )  \) to be true, the necessary condition is \(  -\pi  < \mathrm{Arg} \left ( a \right ) - \mathrm{Arg} \left ( b \right ) \leq \pi \). In other words, \( \mathrm{Arg} \left ( a \right )  - \mathrm{Arg} \left ( b \right ) \) must be in the range of the function \( \mathrm{Arg} \) that is \( \left ( -\pi , \pi \right ] \).

Comments

Popular posts from this blog

Random Imgur Image Generator

 Generate random image from Imgur. Warning! NSFW images may appear. This generator may do not work well in mobile or some browsers.

Random Yugioh Card Generator

Generate a random Yugioh Card.